Field Reporting Tool

A collaboration platform to share multimedia georeferenced information on Crisis Management

Appeddu, A.
Contact information
Name: Alessandro Appeddu
Address: Via Isonzo 52, Fiorano Modenese(MO)
Email: a.appeddu@applius.it
Tel.: +39 333 9139718
Contents

Foreword .. 5
Abstract ... 6
1.Introduction ... 7
2.User requirements ... 8
 (a)Geolocation and data structures ... 8
 2.a.1Container ... 8
 2.a.2Point data .. 9
 2.a.3Lines data ... 9
 2.a.4Polygon data ... 9
 (b)Multimedia .. 9
 (c)Ease of use .. 10
 (d)Low profile .. 10
 (e)Interoperability .. 10
 (f)Identity .. 11
3.Technical specifications .. 12
 (a)Mobile application .. 12
 3.a.1Authentication ... 12
 3.a.2Main activities ... 13
 3.a.3Information browsers ... 15
 3.a.4Configuration ... 17
 (b)Web application .. 19
 3.b.1Authentication ... 19
 3.b.2Main activities ... 20
 3.b.3Exports .. 23
 3.b.4Configuration ... 23
4.Conclusions ... 24
Foreword
This document aims at providing the technical information related to the Field Reporting Tool platform including the details about the implementation of the mobile application and of the website used as information hub.

The description of the mobile app is based on the Universal Windows Platform version and can be used to define how to implement it for other mobile platforms such as Android or iOS.
Abstract
This document will describe the Field Reporting Tool platform, its components and functionality. It will provide the necessary information to develop a software solution capable of interoperating with the platform up to mimicking one of its components, such as a porting of the functionality on another platform.
1. Introduction

In June 2016, the JRC and the Italian Fire Brigade (IFB) signed a collaboration agreement, its main objectives being:

• To obtain the scientific data needed to understand better the process involving the management of the crisis information from the first notification to the first-hand observation and then to the resolution.

• To improve the co-ordination and effectiveness of co-operation efforts between operational bodies in the field of the Civil Protection and the JRC in the field of Crisis Management.

• To promote mutual interest and co-operation in understanding and resolving issues about the user experience and the effectiveness of User-Machine Interfaces.

In order to achieve such objectives the following action were decided:

• Joint development of innovative and cost-effective approaches to improve the activity dispatching and management of a Control Room. The Italian Fire Brigade will make this development available to the JRC to promote its adoption by the Member States.

• Exchange appropriate scientific and technological information, throughout the on-the-field testing of developed software solutions, at least three exercise to evaluate the software provided by JRC. This activity includes the study of the Mobile Crisis Room paradigm (present and future implementations)

• Harmonise information representation and exchange and promote related methods to end-users internationally.

The Field Reporting Tool, hence forward FRT, was developed in order to provide first responders the capability to share information from the field easily and promptly with two major key points:

• The information must be georeferenced. Not only this allows a more effective visualization: it also improves the management of the resources deployed on the field, without requiring a specific activity, but naturally included in the operations performed by the operators.

• The information must carry a valuable payload in terms of multimedia contents, that provides remotely a better understanding of the situation.

On the basis of previous experiences, the reference implementation includes additional functionality such as:

• Tracking: using GPS information, all user’s activities are tracked, allowing to follow the operations of the field. This provided the means to improve the quality of search and rescue activities.

• Automatic report generation: all information gathered are applied to a template and used to provide a draft of a report on the activities performed.

• The interoperability with other system is achieved by the capability to import and export data in many of the most used data formats.
2. User requirements

In August 2016, Italy was struck by an earthquake during the night. Managing the first responders was even more difficult, because there was no mean to have a precise location for the teams deployed. The lack of electrical power that allowed no recognition of the urban whereabouts and the little knowledge of the involved villages in the Crisis Rooms made clear that the teams needed a way to provide easily this information while operating and providing the first support to the population.

At that time, FRT developments was already very advanced, based on clearly identified requirements:

- Geolocation: all activities performed by the operator, therefore all data shared with the Crisis Managers, needed to be provided with a geographic reference
- Multimedia: in order to help the Crisis Managers creating a Common Operational Picture, pictures, video and audio are needed to get a better understanding of the situation
- Ease of use: the application must provide a fast and easy approach to the main functionality. Advanced and more complex features will then be available by navigation, menus and other common means
- Low profile: the application must not require specific, expensive or fragile devices to be operated
- Interoperability: the platform must adhere at commonly adopted protocols and formats to improve the capability to share information with other systems
- Identity: the application needed to be recognizable by the user as owned; therefore, the visual identity of the users should be easy to implement and the platform must be translated in many EU languages

The section will describe how the application has to satisfy these needs.

(a) Geolocation and data structures

Using the location services provided by the device, the mobile application must be able to tag all data with geographical information. The location will use the best precision provided by the system, thus allowing to use the tool also in closed environments, where other location means are available, like Wi-Fi access points or GSM network information.

Providing the information with geolocalization, will then allow organizing the data on a map: the application and the web site will use a map to present the data.

The map must be customizable in terms of background layer, including aerial images and schematic data with road and topographic references.

Geolocalized data will be of three types:

- Points
- Lines
- Polygons

All these data will be arranged in a container, a file that will group all the information related to the activities of the operator and called mission.

The mission object is managed as a json tree and contains all the information regarding a Mission such as: events, attachment names and Tracks.

Here’s an example:

```json
{
    "Id": "e69b7b41-17dd-038e-25e6-3dd5a997ef8e",
    "Title": "Mission example",
}```
"Created": "2018-05-08T22:14",
"Updated": "2018-05-08T22:14",
"IsReadOnly": false,
"AuthorId": "317b285-9f4b-457c-bfc0-edf6b776ce2",
"Description": "Aaa",

"Events": [

{ "Id": "de4ac050-1db1-8681-3960-5e96b009ae83",
  "Title": "Picture taken on 20180508212324",
  "Description": null,
  "Created": "2018-05-08T23:24",
  "Updated": "2018-05-08T23:24",
  "Lat": 44.5331282,
  "Lon": 10.8322032,
  "MissionId": "e69b7b41-17dd-038e-25e6-3dd5a997ef8e",
  "InterventionId": null,
  "Attachments": [] },

{ "Id": "ea586cad-40eb-9e7f-2183-ff904e2976e",
  "Title": "Point stored on 20180508212446",
  "Description": "Hcchf",
  "Created": "2018-05-08T23:46",
  "Updated": "2018-05-08T23:46",
  "Lat": 44.5331032,
  "Lon": 10.8322413,
  "MissionId": "e69b7b41-17dd-038e-25e6-3dd5a997ef8e",
  "InterventionId": null,
  "Attachments": [],
  "Metadata": null,
  "Tags": null },

{ "Id": "44a9ccc0-b68a-4dcd-4db2-c3f7b76725ca0",
  "Title": "Audio message taken on 20180508212329",
  "Description": null,
  "Created": "2018-05-08T23:29",
  "Updated": "2018-05-08T23:29",
  "Lat": 44.5331227,
  "Lon": 10.8322043,
  "MissionId": "e69b7b41-17dd-038e-25e6-3dd5a997ef8e",
  "InterventionId": null,
  "Attachments": [] } ]
null
"Id": "705d6977-936b-6cc1-c7d7-0038d9f827fe",
"InterventionId": null,
"Metadata": null,
"MissionId": "e69b7b41-17dd-038e-25e6-3dd5a997ef8e",
"Tags": [],
"Title": "Track 20180508212333",
"Updated": "2018-05-08T21:24:12.073",
"EndTime": "2018-05-08T21:23:38",
"TravelTime": "00:00:04",
"Length": 1.5015943181808367,
"AvgSpeed": 1.351434886362753
}
2.a.1 Container
In order to start a new activity, the user is required to create a mission, an object that will contain all the information gathered on the ground and used to spot more easily the data when browsing the repositories.

The mission has a title and a description to help the users recognize them. The system manages automatically the timestamps to record when the mission was created and the last time it was modified.

2.a.2 Point data
The user will be allowed to create point like data called events.

An event will carry information about something specific occurred or observed in a location.

An event carries the following information:

- Title, a short description; when added through a shortcut, it can be generated automatically and the user can modify it
- Description, a longer description of free text left to the user preferences, who can modify it later
- Timestamp, internally stored in UTC: this time reference relates to the moment the event has been created and cannot be edited
- Position, the longitude and latitude coordinates of the event that cannot be edited
- Metadata, a set of key/value pairs generated by the software for specific purposes, e.g. telemetry or other sensor related information
- Attachments, a set of pictures, video, sounds and documents that the user can add, delete and share

The events must provide the option to manage a polygon attached to them (see below), including a preferred rendering colour. Though all versions will display them, the mobile application is not required to allow enter the polygon data.

2.a.3 Lines data
The mobile application will provide the feature to track the operator’s movements, even in standby, as long as allowed by the power policy of the operating system. The positions recorded will be stored in a track object, that carries the following information:

- Title, a short description generated automatically recording the date and the time the track was started
- Points, the collection of all the positions recorded. When possible, on top of the coordinates, each point should record additional information, such as the altitude, the timestamp, the quality of the satellite observation and the number of observed satellites

2.a.4 Polygon data
All events may be equipped with a polygon, a collection of points (pairs of longitude and latitude coordinates) to be used as a close area and displayed properly.

The mobile app is not required to allow inserting such information. This feature should be present in the web interface.

The polygon will be described also by a preferred rendering colour, that the user interface should use. E.g., the colour will be used for the contour and a transparent version of it will fill it.
(b) **Multimedia**

Together with the events, the user will find a collection of multimedia. These will include:

- **Pictures**, stored in the formats used by the mobile devices’ cameras, they will be presented as thumbnail, allowing the user to enlarge them. The user must be able to insert a new event just by taking a picture. More than one picture can be added to an event, either by using the camera or from the device memory. The website should add as an overlay the time and position coordinates and possibly a logo as a copyright indication.

- **Sounds**, depending on copyrights not all formats will be available (e.g. mp3 can be restricted). All user interfaces must allow their playback. The user must be able to insert a new event just by recording a sound. More than one recording can be added to an event, either by using the microphone or from the device memory.

- **Videos**, stored in the formats used by the mobile devices’ cameras, they can be massive and the user should be warned to limit the recording time. All user interfaces must allow their playback. The user must be able to insert a new event just by recording a video. More than one video can be added to an event, either by using the camera or from the device memory.

- **Documents**, at least pdf, word and excel document should be supported, since usable on all smartphones. More than one document can be added to an event, selecting it from the device memory.

(c) **Ease of use**

The user interfaces will be developed adhering to the best practices to guarantee usability and to smooth the learning curve. Impact areas of commands will be large enough to use the software without using a pen or a stylus, but not enough to be used with gloves. All main functionality must be available from the main interface, including:

- Return to the map visualization
- Access to the list of missions
- Adding a new event
- Centring on an event/mission or the user location, whichever the most appropriate
- Saving/uploading the mission data
- Starting/stopping the tracking, where appropriate
- Accessing the configuration options

The map visualization will allow the use of different reference layers including aerial/satellite pictures and road/geographical rendered data. The users will choose the reference using the configuration options.

The user interfaces will use the system settings as much as possible to be compliant with the users’ preferences. Additional settings will allow selecting the coordinates’ visualization, either as decimal degrees or using degree, minutes and seconds, and the time references visualization in local time or as Universal Time Coordinates (UTC).

(d) **Low profile**

The device required to run the mobile software should be as simple and cheap as possible: entry level devices should be up to the task. It means that massive GIS components and complex application frameworks should be avoided. External dependencies from licensed components should be as few as possible.
Basic smartphone functionality are sufficient, as long as GPS and network connectivity are provided. Approximately one megapixel display resolution will be enough.

(e) **Interoperability**

Using a web site as an information hub will require using http(s) protocol to transfer data to and from the mobile application.

Data transfer will use xml formats (georss) or json formats (geojson), the most widely adopted data formats for this use.

While it is not necessary for the mobile application, standard data format should be handled by the platform. The web site must provide the means to export the information in standard geographic formats (GPX, Shapefile, KML/KMZ).

The web site will also produce a draft report with all the information of a mission, including maps and pictures. The output document will be in a MS Word compatible format, open to be modified by the user, who will flesh out the contents.

(f) **Identity**

In order to win the users to the use of the tool, it is very important they feel to own it. The user interfaces will therefore be translated in as much EU languages as possible.

Another way to enforce the ownership of the tool is the adoption of the users’ visual identity: colours and logos of the users must be easily accommodated in the user interface, as long as they do not pose serious usability issues (e.g. low contrast colour choice for texts).
3. Technical specifications

In order to describe better the functionality required from the platform, this section benefits from the use of two prototypes developed by the JRC, which implement the best part of the required features.

The mobile application is developed with Cordova, a multi platform environment Javascript based: it means that runs almost identically on all smartphones and tablets running Android, iOS and Windows.

The web site is developed as a simple ASP.Net application, using JavaScript based libraries to provide a better and more interactive user interface: OpenLayers, Bootstrap and JQuery.

The prototypes interfaces shown in the document will use the visual identity of the Italian Fire Brigade, according to the official IFB web site.

(a) Mobile application

The reference mobile application was developed with Cordova.

With this platform, it is possible to write javascript source code that can be compiled for Android, iOS, Windows and other mobile operating systems.

The outcome was that a very short development time (twelve weeks full time) was required to have the first prototype ready to be tested on the field by real users.

3.a.1 Authentication

In order to access the central repository of the information, that is implemented by the web application itself, the user needs to be authenticated. This is not required to perform simple activities, nevertheless the application requires the user’s identity to be confirmed. The authentication process is network based and it is not possible to require it for all FRT’s uses, otherwise the connectivity would become a requirement for all uses: FRT must be available at any time, even if no connectivity is available.

For this reason, following a successful network based authentication, the user will be required to set a 4-digit PIN to unlock the application and to perform as the user previously authenticated. The user can change the identity in any moment by performing another full authentication.

All the means to protect the authentication information have been implemented: when using a clear channel (http) the password is hashed together with other information, otherwise it is sent as a text when protected by the channel encryption (https). This allow using a third-party authentication by passing the credentials to another service.

In case of clear channel, the password and the username separated by colon character (:) will be converted in binary as UTF8 characters then MD5-hashed. The resulting quantity will be Base64 encoded and sent together with the username to be authenticated.

The settings page is accessible from the login page to allow changing the repository and the communication security level before performing the authentication.
3.a.2 Main activities

The user interface is organized around a main area that displays the map, the information browsers or the configuration settings. Moving from a display to another requires touching the screen one or two times.
3 Main user interface

In order to provide the user with a reference, the side menu is self-explaining.

Several geographic references
Offline and online data
Rapid multimedia
Data creation
Rapid sharing
Tracking utility
Customizable

4 User interface with open menu and explanations
On the map the information related to the current mission are displayed together with others the user can select like previous missions or other users’ missions downloaded from the server. The mission format is simple enough to accommodate other data like geographical references. All icons refer to an event and clearly show if there are multimedia attachments. The tracks of the current mission are drawn in brighter colours than other missions’ tracks. A cross shaped red symbol is placed in the user’s location. In case it is not shown, the user can centre that location on the map by using the location service button in the upper right corner.

In the bottom right corner, a compass is shown both to point to the North and when pressed, to reset the map orientation and put the North back on top of the map. The map allows usual touch interactions to zoom and rotate.

In the top right corner, every GPS reading, the present coordinates are displayed as longitude and latitude separated by the pipe character (|). Depending on the user settings, coordinates will be displayed as decimal degrees with up to 6 decimals or as degrees with minutes and seconds.

The user can configure the map changing its background layer to display satellite images or drawings of the roads, city and country borders and the like: presently, it is in use the base maps services provided by Google Maps, and in the future it will be possible to use those provided by the European Commission. It is also possible configuring the map to display always the north on the top or to follow the user movements and to show on top the direction he aims to.

The name of the current mission is displayed on top of the page; if no mission has been selected “mission” (or its translation) will appear instead. This text is a button, that leads to the mission browser page.

In order to add information, the side menu provides shortcuts that the user can select, including:

- Adding a new event by inserting text information about it by means of the event visualization page
- Adding a new event by taking a picture using the system cameras
- Adding a new event by recording a sound using a specific interface, if not provided by the system
- Adding a new event by shooting a video using the system cameras
- Starting or stopping tracking the user’s movements

Additional buttons allows:

- Accessing the list of the missions present in the device, see Information browsers
- Uploading the current mission to the online repository: the button will show the upload status being orange during the process and getting green or red for a few seconds depending on the success of the upload, before reverting to its normal colour
- Accessing the configuration utility, see Configuration
- Accessing a page describing the application

3.a.3 Information browsers

The user can access the local repository of missions to select the current mission, to create a new mission, or to access the remote repository. This is the only action that requires Internet connectivity.
Missions can be turned on or off: it will toggle their visualization on the map.

Accessing the mission information is possible through the pencil icon. The current mission is always available by touching its title on the top of the screen. The rest of the mission display will act as selection of the mission as the new current mission.

The mission is identified by its title, its creation date and must show both the numbers of events and the number of tracks it is provided with.

The interface allows

- going back to the previous page
- adding a new mission
- accessing the online repository
- authenticating as a different user

When accessing the online repository, the user will be provided only the information he is entitled to access depending on the authorization logic implemented by the server.

Selecting a mission will enable its download: the mission will be downloaded starting with its metadata, while the attached multimedia will be downloaded after.

The online repository must be browsable by date.
The user can then view and modify the information related to the mission or list its events and tracks. All modifications must be confirmed with the Save button or discarded exiting the view without saving. In case the Save on Update option is active, saving will immediately attempt a mission upload.

The upload button will attempt immediately to upload all the information to the online repository, but those already present and not modified since the last synchronization.

The mission descriptive texts can be modified, as well as events and tracks deleted.

In case the Save on Update option is active, saving will immediately attempt a mission upload after each of these actions.

Events are summarized by a title, spatial and time coordinates (creation time and location, not modifiable), and the count of each multimedia per type.

For each event, the user can access its data and the attached multimedia. It is possible to change the information, to add or delete attachments and to share attachments by using other applications.

In case the Save on Update option is active, saving will immediately attempt a mission upload.

Touching the multimedia icon, the related viewer will show it or play it.

3.a.4 Configuration

The application complies with the system settings, including the language to be used, if available, English being the default. Presently, the available languages are Italian, English, French, Spanish, Polish, Rumanian, German, Portuguese and Greek.

The user can customize the experience by means of three categories:

- **User interface**
- **Map**
- **FRT**

**User interface**

These settings include
The format for the coordinates: decimal degrees (+ and – differentiate the quadrants) or degrees, minutes and seconds (N/S and E/W differentiate the quadrants)

The date reference: local time or Universal Time Coordinates (it is used for visualization only: all data are internally stored in UTC)

A flag to exit the mission page after the upload completion

The enabled shortcuts

Map

These settings, as mentioned before, include

- The map background
- A flag to force the map to include always the user’s location
- The heading of the map, either north or depending on the user’s movements

FRT

These settings customize how the data are managed and include

- How often the data should be automatically uploaded: never, every five minutes, every ten minutes or every half an hour
- A flag to force the event and track lists to be uploaded each time
- A distance: as long as the user remains below this distance from the previous event, new data will be added to the event, instead of creating a new one. It can be zero
- A flag to upload the data each time a new information is added, deleted or changed
- The url of the web based repository
- A flag to start automatically tracking the user when the application starts

7 Configuration settings interface
(b) **Web application**

In order to store and exchange the information collected, a web site operates as information hub, allowing FRT to use it as a repository and as authentication service.

The web application was developed as a simple ASP.Net application, requiring only a few javascript libraries to improve the user experience: OpenLayers, Bootstrap and jQuery.

The application is better suited to display the information than to add them, but it provides some input features as well.

3.b.1 **Authentication**

The web application shares the same users and credentials used by the mobile application. The user must authenticate in order to browse and display the site contents.

3.b.2 **Main activities**

All the missions uploaded by the user will be shown in an easy to browse list, based on the creation date of each mission.

![Website login page](image)
9 Online repository browser
The mission browser allows also the selection of several missions to be composed together in the same map.

10 Mission multiple selection
Usually, the user will concentrate on a single mission. The web application will then present all the information together, synchronizing the map with the list on the left. The single events can be browsed and highlighted on the map and their attachments displayed and downloaded. It is worth noting that the pictures uploaded onto the repository are analysed, their time and geographic information extracted and overlaid. Optionally a copyright logo can be also added to the picture.

Mission visualization page

The visualization can be customized selecting which information will be displayed and which geographical reference will be used for the background.

Activating the editing mode, the user can add events to the mission just clicking on the map. It is also possible to request an automatic periodic refresh of the mission information, in order to display new information uploaded from the field.
3.b.3 Exports

A very important feature provided by the web application is related with the capability to export the contents of the missions in several well-known formats: KML/KMZ, Shapefile, GPX, GeoRSS. The whole content of the mission can also be downloaded in a ZIP file.

Based on a MS-Word template, it is also possible to generate a draft report of the activity. It will include all the data related to the activity, including general maps and a card for each event including its information and the attached pictures.

This will require the user to flesh it out adding his observations, maybe exploiting the recordings attached to the events.
3.b.4 Configuration

The web application will try to comply with the general settings of the client, but the language can be chosen explicitly. Presently, the available languages are Italian, English, French and Polish.
4. Conclusions