Use of models to support Disaster Loss Data collection

Lauro Rossi
Program Director
How can models help?

(Sendai Framework Data Readiness Review 2017)
How can models help?

• How can we estimate
 • economic loss per sector (agriculture, productive assets, housing, cultural heritage) → Target C
 • the number of critical infrastructure health, education, critical infrastructure, basic services → Target D

• How can indicators on past event impacts be reconstructed?
Impact assessment through geospatial indicators

\[\text{Impact} = f(H, E, V) \]

- **Hazard**
- **Exposure**
- **Vulnerability**

MODELLING APPROACH

- N. of assets affected
- Economic losses
 - Indicators B,D: 1.5.1, 11.5.1, 13.1.1
 - Indicators C: 11.5.2
The RASOR platform

HAZARD
- Flood
- Landslide
- Earthquake
- Tsunami
- Hurricane
- Volcano
- Wind

EXPOSURE & VULNERABILITY
- Crop
- Forest
- Buildings
- Industry
- Lifelines
- Population
- Transport
- Infrastructures

= IMPACT
- Physical
- Human
- Social
- Economic
- Environmental
Genoa 2014, flood impact on buildings and population
Genoa, 9 October 2014 | Flood hazard: water depth and velocity
Exposure characterization:
- Cadastral dataset
- Open Street Map
- Satellite maps
- Virtual survey
Genoa | Vulnerability curves for building

Water depth [m]

Damage [%]
Genoa | What if: diversion channel for Fereggiano creek (tributary) + new culvert for Bisagno creek

diversion channel on tributary rio Fereggiano

new culvert for the Bisagno river
Genoa, 9 October 2014 event

Current situation

Diversion channel + new culvert

Water depth [m]
- 0.0
- 0.2
- 0.4
- 0.6
- 0.8
- 1.0
- 1.2
- 1.4
- 1.6
- 2.0
- 2.4
- 3.0

Economic damage [M€]
- 0-0.0.1
- 0.01-0.02
- 0.02-0.2
- 0.2-0.5
- 0.5-1.0
- 1.0-2.0
- 2.0-2.5
Genoa, probable maximum loss curve

Scenario	Average Annual Loss (M€/year)
Current situation | 3.2 M€/year
diversion channel + new culvert | 0.8 M€/year

Payback period: 80 years
Genoa, recent past events…

<table>
<thead>
<tr>
<th>Past event</th>
<th>Discharge peak [m3s$^{-1}$]</th>
<th>Return period [years]</th>
<th>Damage, current situation [M€]</th>
<th>Damage, dev. channel + new culvert [M€]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1953</td>
<td>760 m3s$^{-1}$</td>
<td>50 years</td>
<td>47 M€</td>
<td>0 M€</td>
</tr>
<tr>
<td>1970</td>
<td>1100 m3s$^{-1}$</td>
<td>100-200 years</td>
<td>194 M€</td>
<td>120 M€</td>
</tr>
<tr>
<td>1992</td>
<td>700 m3s$^{-1}$</td>
<td>30-50 years</td>
<td>??</td>
<td>0 M€</td>
</tr>
<tr>
<td>2011</td>
<td>830 m3s$^{-1}$</td>
<td>50-100 years</td>
<td>43 M€</td>
<td>0 M€</td>
</tr>
<tr>
<td>2014</td>
<td>1040 m3s$^{-1}$</td>
<td>100-200 years</td>
<td>110 M€</td>
<td>14 M€</td>
</tr>
</tbody>
</table>
Genoa, what if the next 50 years are as “unlucky” as the past 50 years

<table>
<thead>
<tr>
<th>Scenario</th>
<th>Structural measure Cost</th>
<th>Average Annual Loss</th>
<th>Payback period</th>
<th>Average Annual Loss (^1) (M€/anno)</th>
<th>Payback period</th>
</tr>
</thead>
<tbody>
<tr>
<td>Current situation</td>
<td>0 M€</td>
<td>3.2 M€/year</td>
<td></td>
<td>6.6 M€/anno</td>
<td>-</td>
</tr>
<tr>
<td>Dev. Channel + New culvert</td>
<td>251 M€</td>
<td>0.8 M€/year</td>
<td>80 years</td>
<td>2.2 M€/anno</td>
<td>about 50 years</td>
</tr>
</tbody>
</table>

Payback period: 80 years

Payback period: 50 years

\(^1\) Average Annual Loss based on the damage last 50 years economic loss
People vulnerability to flood
Genoa, 9 October 2014 event

Current situation

Diversion channel + new culvert

Hazard for people
- Low
- Medium
- High
- Very high

People potentially involved
- 8560
- 660
- 360
- 10
Disaster Loss Data
into a Risk Assessment perspective
(Sendai Framework Priority 1)
How to make informed decisions on DRR measures?

- What is the average annual loss that is experienced in the country due to one or more hazards?

- How can we measure the benefit of different DRR policies?

- Will our decisions be still valid in the future? How can we consider external constraints such as climate change and population growth?

- How can we monitor actual decrease after mitigation?

Quantitative Dynamic Risk Assessment
Quantitative Risk Assessment

Loss Exceedance Curve

Tail Value at Risk

Average Annual Loss

probability

%
Quantitative Risk Assessment

Present condition loss exceedance curve (computed)
Confidential interval observed losses distribution
Observed loss in present condition
Quantitative Risk Assessment

- Present loss exceedance curve (computed)
- Loss exceedance curve (computed) after mitigation measures
- Present losses distribution confidence interval
- Observed losses (after mitigation measures) distribution confidence interval
- Observed loss in present condition
- Observed loss after mitigation
Quantitative Dynamic Risk Assessment

- Climate change → hazard increasing
- Population grow → exposure increasing
- Prevention/mitigation measures → exposure/hazard/vulnerability decrease

climate change, population increase
DRR policies
climate change adaptation
Strong winds impacts on Anse d’Hainault (Hai3)

Economic damage to buildings:
- estimated from satellite (Copernicus EMS): 36 M$
- simulated with RASOR: 29 M$

Thank you

lauro.rossi@cimafoundation.org